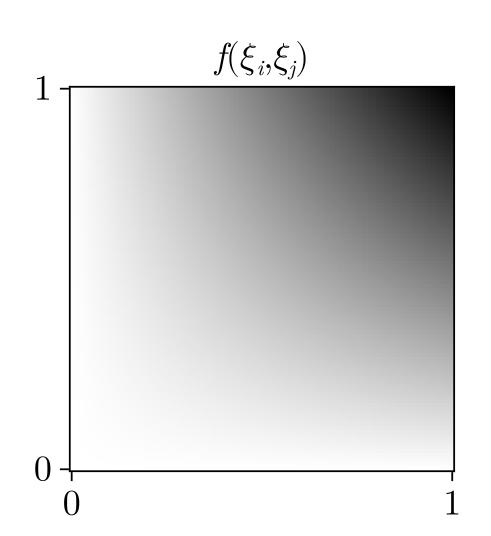


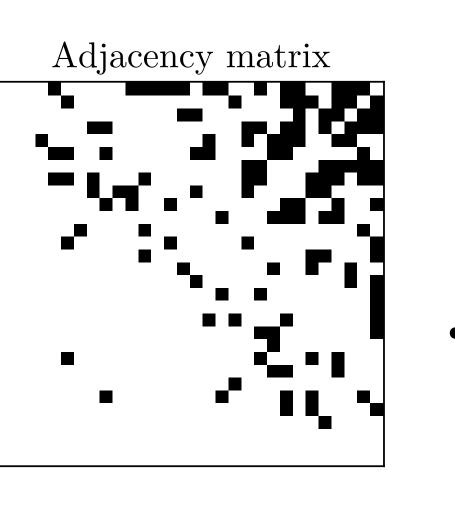
Motivation

- Modelling Complex Systems: Graphons provide a way to model and analyse complex systems where data points are interconnected, such as social networks, biological systems, and communication networks.
- Beyond Simple Data: Traditional graphons only handle binary interactions, missing the more **complex relationships** found in empirical data.
- Unmet Need: Decorated graphons address this complexity, but no estimation methods existed – until now.
- Our contribution: We present a novel decorated graphon estimation technique that allows for **complex relationship modelling** and enhances system understanding.
- **Practical Use:** These advancements enable better analysis of diverse data types, from social networks to protein interactions and disease relationships.

Graphs with binary edges

Simple graph: adjacency matrix $[A_{ij}] \in \{0,1\}^{n \times n}$.

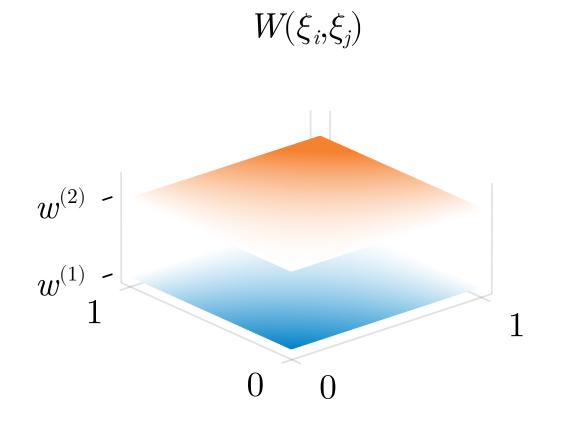


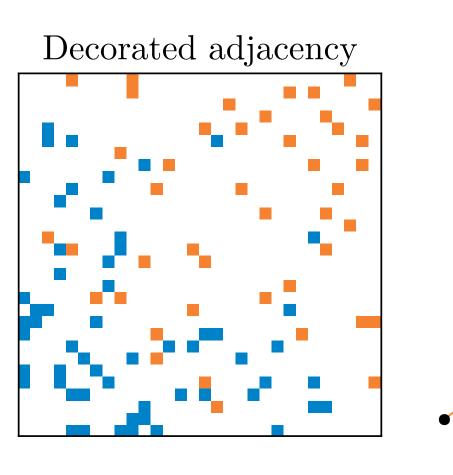


Let $\xi_i \stackrel{\text{iid}}{\sim} U(0,1)$, we model $[A_{ij}]$ with a graphon f $A_{ij}|\xi_i,\xi_j \stackrel{\text{ind.}}{\sim} \text{Bernoulli}(\theta_{ij}), \quad \theta_{ij} = f(\xi_i,\xi_j).$

Decorated graphs (edge attributed)

For a finite set \mathcal{K} with $L < \infty$ elements (e.g. $\{0, 1, 2\}$), we let $[A_{ij}] \in \mathcal{K}^{n \times n}$.





We model $[A_{ij}]$ with a decorated graphon $W = (w^{(1)}, \ldots, w^{(L)})$

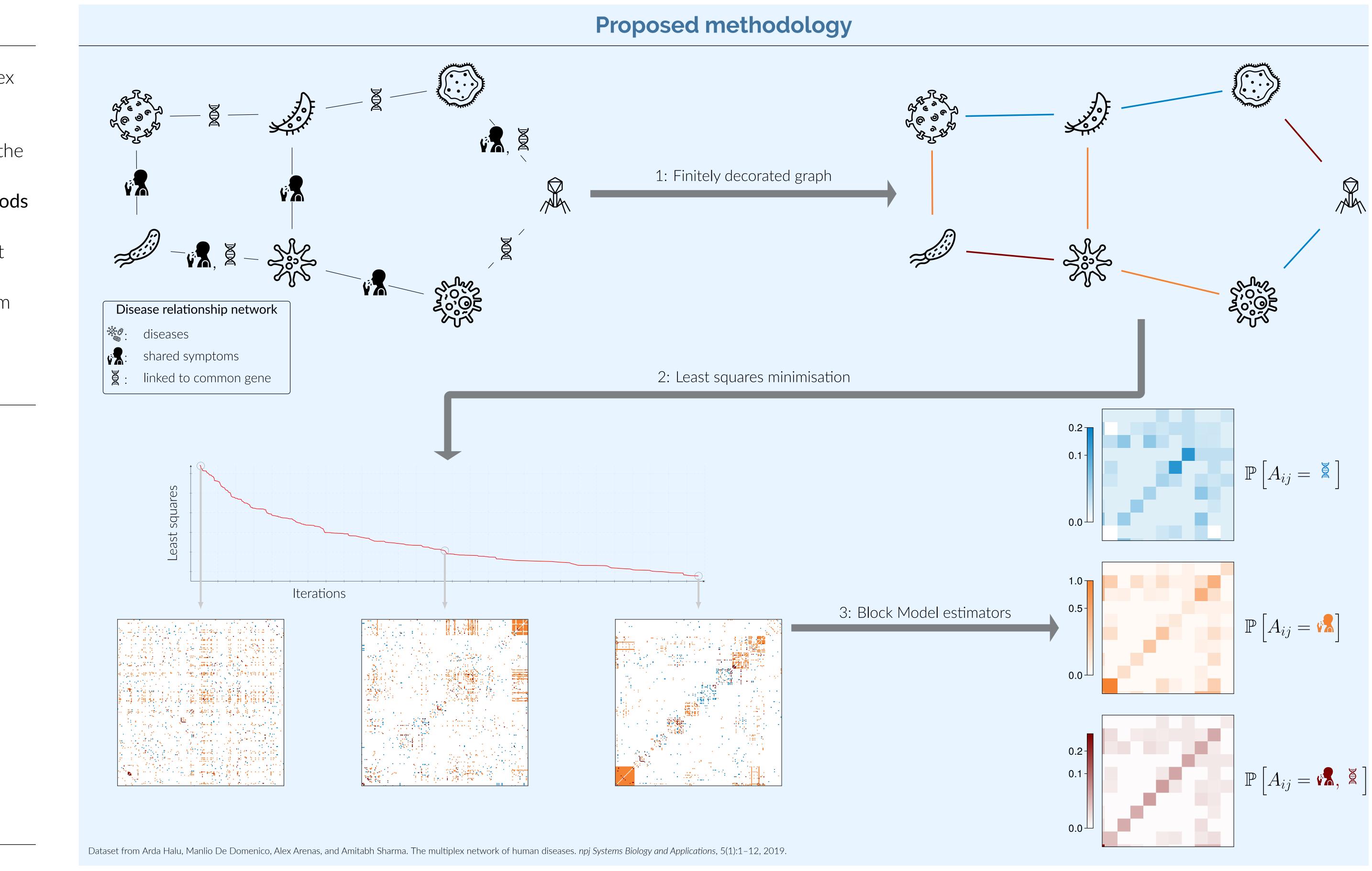
$$\mathbb{P}[A_{ij} \mid \xi_i, \xi_j] = w^{(1)}(\xi_i, \xi_j) \text{ and } \mathbb{P}[A_{ij} \mid \xi_i, \xi_j] = \theta_{ij} = \left[w^{(l)}(\xi_i, \xi_j)\right] \in [0, 1]^L.$$

A unifying framework for graph models beyond binary edges

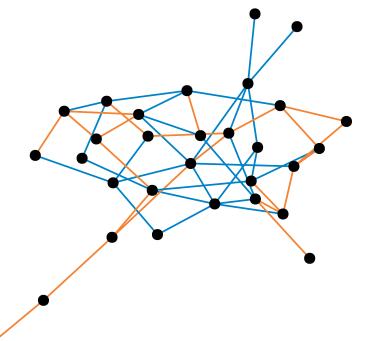
Inference for decorated graphs and application to multiplex networks [1]

Charles Dufour

Simple graph



Decorated graph



Convergence results

• W is a k-block Block Model: [1, Theorem 1]

$$\|\theta^* - \hat{\theta}\|_F^2 = O_p \left($$

• W is α -Hölder continuous: [1, Theorem 2]

$$\|\theta^* - \hat{\theta}\|_F^2 = O_p \left(n^{-2\alpha/(\alpha+1)} + \frac{\log(n)}{n} \right),$$

MISE $\left(\widehat{W}, W\right) = O_p \left(n^{-2\alpha/(\alpha+1)} + \frac{\log(n)}{n} + n^{-\alpha\wedge 1} \right)$

 $= w^{(2)}(\xi_i,\xi_j),$

Sofia C. Olhede

- Lk^2 $\log(k)$

- graphs.
- The framework is applicable to
 - Multiplex networks
 - 2. Weighted networks
- **Community detection** with **multiple types** of connections.

[1] Charles Dufour and Sofia C. Olhede. Inference for decorated graphs and application to multiplex networks, August 2024. arXiv:2408.12339 [cs, stat]

[2] Dávid Kunszenti-Kovács, László Lovász, and Balázs Szegedy. Multigraph limits, unbounded kernels, and Banach space decorated graphs. Journal of Functional Analysis, 282(2):109284, January 2022

Takeaways

• **First estimation method** for the generating mechanism of exchangeable decorated

- 3. Signed networks
- 4. Temporal networks.