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Why bother ?

Figure 1: Different levels of Euclideanity
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”Simple” problems

Howmany 4-cycles must a graph with edge density at least 1/2 have?

• 𝑑 (𝐻,𝐺) := # copies of𝐻 in𝐺
(𝑛𝐺𝑛𝐻 )

.

• 𝑑 (𝐶2,𝐺) : edge density
• 𝑑 (𝐶4,𝐺) : 4-cycles density

• Minimize 𝑑 (𝐶4,𝐺) over all finite graphs𝐺 with 𝑑 (𝐶2,𝐺) = 1/2.
• Minimize 𝑥3 − 6𝑥 over all rational numbers 𝑥 satisfying 𝑥 ≥ 0.
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Graph limit and graphon: intuition

Images from [Glasscock, 2015]
Graph limits were introduced by [Lovász and Szegedy, 2006]
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Labelling of the nodes gets in the way

Image from [Orbanz and Roy, 2014]
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Graph limit and graphon: definition

• Graphon [Lovász and Szegedy, 2006]:

𝑊 : [0, 1]2 ↦→ [0, 1] Lebesque-measurable

• Cut-norm:

𝛿□ (𝑊,𝑈 ) := inf
𝜑,𝜓

sup
𝑆,𝑇 ⊆[0,1]
measurable

����∫
𝑆×𝑇

𝑊 𝜑 (𝑥, 𝑦) −𝑈𝜓 (𝑥, 𝑦)d𝑥d𝑦
���� ,

𝜑,𝜓 measure preserving transformations of [0, 1].

Space of graphons equipped with 𝛿□ is compact

• Graph limit: equivalence class

[𝑊 ] =
{
𝑊 𝜑 : (𝑥, 𝑦) ↦→𝑊 (𝜑 (𝑥), 𝜑 (𝑦)) | 𝜑 an invertible, measure

preserving transformation of [0, 1]

}
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Convergence ”in parameters”

Homomorphism densities: 𝐹 = (𝑉 , 𝐸) a simple finite graph,𝑊 a graphon

𝑡 (𝐹,𝑊 ) :=
∫
[0,1] |𝑉 |

∏
𝑖 𝑗 ∈𝐸𝐹

𝑊
(
𝑥𝑖 , 𝑥 𝑗

)∏
𝑖∈𝑉

d𝑥𝑖

≈ Expected density of 𝐹 in𝑊

𝑊𝑛 →𝑊 ⇔ 𝑡 (𝐹,𝑊𝑛) → 𝑡 (𝐹,𝑊 ) for all simple graphs F

Finitely forcible graphons: [Lovász and Szegedy, 2011] 8
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When we consider networks, what is the sample size ?
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We consider exchangeable simple graphs

Figure 2: Graph generated from a stochastic block model with 3 groups. Relabelling the nodes
hides the structure in the adjacency matrix.

(
𝐴𝑖 𝑗

) d
=
(
𝐴𝜎 (𝑖)𝜎 ( 𝑗)

)
for all finite permutations 𝜎.
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Exchangeability gives us representation

From Aldous-Hoover theorem:

𝑈𝑖
𝑖𝑖𝑑∼ Uniform[0, 1]

𝐴𝑖 𝑗 |𝑈𝑖 ,𝑈 𝑗
𝑖𝑖𝑑∼ Bernoulli

(
𝑊 (𝑈𝑖 ,𝑈 𝑗 )

)
for 𝑖 < 𝑗,

where𝑊 : [0, 1]2 ↦→ [0, 1] is symmetric, measurable→ graphon.

All exchangeable graphs come from a graphon.

12



Exchangeability gives us representation

From Aldous-Hoover theorem:

𝑈𝑖
𝑖𝑖𝑑∼ Uniform[0, 1]

𝐴𝑖 𝑗 |𝑈𝑖 ,𝑈 𝑗
𝑖𝑖𝑑∼ Bernoulli

(
𝑊 (𝑈𝑖 ,𝑈 𝑗 )

)
for 𝑖 < 𝑗,

where𝑊 : [0, 1]2 ↦→ [0, 1] is symmetric, measurable→ graphon.

All exchangeable graphs come from a graphon.

12



How to generate a graph given a graphon

Figure 3: Sampling procedure for node exchangeable graphs. Image from [Orbanz and Roy, 2014].
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Example of graphons for common graph models
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”Vanilla” graphons cannot generate sparse graphs

Basic graphon theory only covers dense graphs:

If |𝐸𝐺𝑛 | = 𝑜 (𝑛2) (i.e., sparse), then𝐺𝑛 → empty graph.

solution

↓

Scaled graphon [Bickel and Chen, 2009]

𝐴𝑖 𝑗 |𝑈𝑖 ,𝑈 𝑗
𝑖𝑖𝑑∼ Bernoulli

(
𝜌n 𝑓 (𝑈𝑖 ,𝑈 𝑗 )

)
for 0 < 𝑖 < 𝑗 ≤ 𝑛,

where 𝑓 : [0, 1]2 ↦→ Rwith
∬

[0,1]2 𝑓 (𝑥, 𝑦)d𝑥d𝑦 = 1.
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Step function approximation

Step function on [0, 1]2 → Stochastic Block model

17



How can we estimate graphons ? (network histogram)

Figure 4: The 2 steps in graphon estimation using network histogram [Olhede et al., 2014].
Group sizes are computed from the data.
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How can we estimate graphons ? (method of moments)

Method of moments: compare theoretical and empirical homomorphism densities of a
set of finite simple graphs to find parameters of SBM.

𝑡 (𝐹,𝑊1) = 𝑡 (𝐹,𝑊2) ∀𝐹 ⇒𝑊1,𝑊2 parametrize the same random graph.

Figure 5: On the left 𝑘-𝑙-wheel (𝑘 = 3,𝑙 = 4) used in [Bickel et al., 2011], on the right cycle used in
ours.
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Summary
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OK, so what was this talk about?

Three POVs on graphons

• Generative models

• Limits of convergent graph sequences

• Objects identifying family of structurally similar graphs (hom. densities)

General summary

• Graphons→ closure of space of exchangeable finite simple graphs

• Graphons↔ exchangeable graphs

• Mostly theoretical (e.g., used to study properties of GNN
[Keriven et al., 2020, Ruiz et al., 2021b, Ruiz et al., 2021a])
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Homomorphism definition

Homomorphisms are adjacency preserving maps frommotif 𝐹 = (𝑉 ′, 𝐸 ′) into graph
𝐺 = (𝑉 , 𝐸)

𝛽 : 𝑉 ′ → 𝑉 such that (𝑖, 𝑗) ∈ 𝐸 ′ implies (𝛽 (𝑖), 𝛽 ( 𝑗)) ∈ 𝐸

hom(𝐹,𝐺) represent the number of homomorphisms between motif 𝐹 and graph𝐺.

𝑡 (𝐹,𝐺) = hom(𝐹,𝐺)
𝑛𝑛′



Dense and sparse

Dense
|𝐸 (𝑔𝑚) |
|𝑉 (𝑔𝑚) |2

= 𝑂 (1)

Sparse
|𝐸 (𝑔𝑚) |
|𝑉 (𝑔𝑚) |2

= 𝑜 (1)

sparse⇒
∬

[0,1]2 𝑤 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 0 ⇒ 𝑤 (𝑥, 𝑦) = 0 a.e.



Network Histogram

𝑧 = argmax
𝑧∈Z𝑘

∑
𝑖< 𝑗

{
𝐴𝑖 𝑗 log𝐴𝑧𝑖𝑧 𝑗 +

(
1 −𝐴𝑖 𝑗

)
log

(
1 −𝐴𝑧𝑖𝑧 𝑗

)}
where for all 1 ≤ 𝑎,𝑏 ≤ 𝑘 they define the histogram bin heights

𝐴𝑎𝑏 =

∑
𝑖< 𝑗 𝐴𝑖 𝑗1{𝑧𝑖=𝑎}1{𝑧 𝑗=𝑏}∑
𝑖< 𝑗 1{𝑧𝑖=𝑎}1{𝑧 𝑗=𝑏}

,

where 𝐴 an be seen as the estimated connection matrix of the block model conditional
on the assignment vector 𝑧
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