

Graph limit and graphons

A short statistical introduction

Charles Dufour charles.dufour@epfl.ch

September 30, 2022

Chair of Statistical Data Science (SDS)

Outline

1. Graph limit

- 2. Graphon in statistics
- 3. Estimation

4. Summary

Inspired by [Janson, 2010, Glasscock, 2015, Keriven, 2020]

Why bother ?

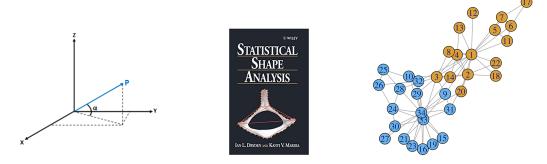


Figure 1: Different levels of Euclideanity

Graph limit

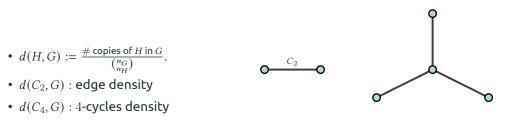
1. Graph limit

2. Graphon in statistics

3. Estimation

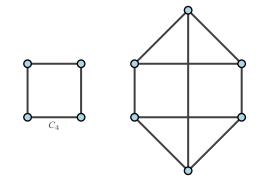
4. Summary

- $d(H,G) := \frac{\# \operatorname{copies} \operatorname{of} H \operatorname{in} G}{\binom{n_G}{n_H}}.$
- $d(C_2, G)$: edge density
- $d(C_4, G) : 4$ -cycles density



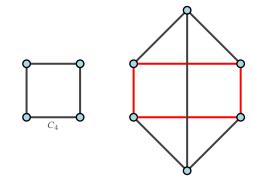
 $d(C_2, G) = 0.5$

How many 4-cycles must a graph with edge density at least 1/2 have?

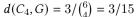


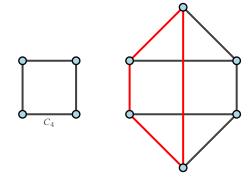
- $d(H,G) := \frac{\# \operatorname{copies} \operatorname{of} H \operatorname{in} G}{\binom{n_G}{n_H}}.$
- $d(C_2, G)$: edge density
- $d(C_4, G) : 4$ -cycles density

 $d(C_4, G) = 3/\binom{6}{4} = 3/15$

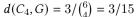


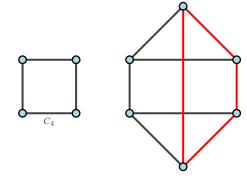
- $d(H,G) := \frac{\# \operatorname{copies} \operatorname{of} H \operatorname{in} G}{\binom{n_G}{n_H}}.$
- $d(C_2, G)$: edge density
- $d(C_4, G) : 4$ -cycles density



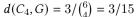


- $d(H,G) := \frac{\# \operatorname{copies} \operatorname{of} H \operatorname{in} G}{\binom{n_G}{n_H}}.$
- $d(C_2, G)$: edge density
- $d(C_4, G) : 4$ -cycles density

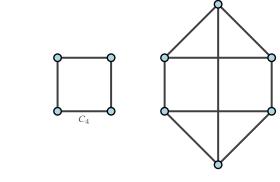




- $d(H,G) := \frac{\# \operatorname{copies} \operatorname{of} H \operatorname{in} G}{\binom{n_G}{n_H}}.$
- $d(C_2, G)$: edge density
- $d(C_4, G) : 4$ -cycles density



How many 4-cycles must a graph with edge density at least 1/2 have?



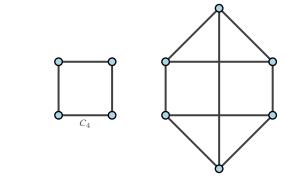
- $d(H,G) := \frac{\# \operatorname{copies} \operatorname{of} H \operatorname{in} G}{\binom{n_G}{n_H}}.$
- $d(C_2, G)$: edge density
- $d(C_4, G) : 4$ -cycles density

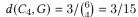
 $d(C_4, G) = 3/\binom{6}{4} = 3/15$

• Minimize $d(C_4, G)$ over all finite graphs G with $d(C_2, G) = 1/2$.

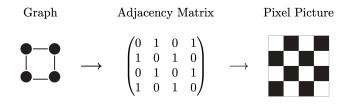
d(H,G) := ^{# copies of H in G}/_(ⁿG).
d(C₂,G) : edge density

• $d(C_4, G)$: 4-cycles density

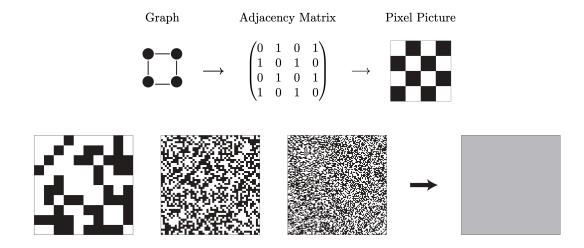




- Minimize $d(C_4, G)$ over all finite graphs G with $d(C_2, G) = 1/2$.
- Minimize $x^3 6x$ over all rational numbers x satisfying $x \ge 0$.



Images from [Glasscock, 2015] Graph limits were introduced by [Lovász and Szegedy, 2006]



Images from [Glasscock, 2015] Graph limits were introduced by [Lovász and Szegedy, 2006]

Labelling of the nodes gets in the way

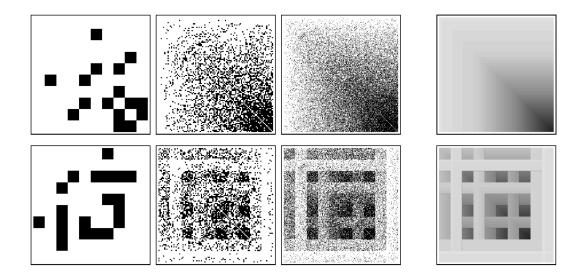
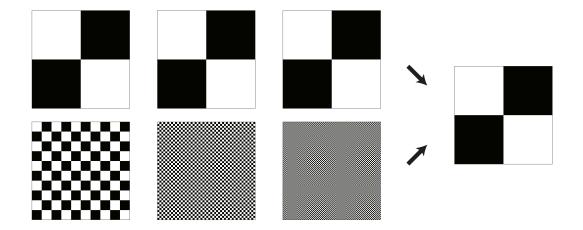


Image from [Orbanz and Roy, 2014]

Labelling of the nodes gets in the way



• Graphon [Lovász and Szegedy, 2006]:

 $W: [0,1]^2 \mapsto [0,1]$ Lebesque-measurable

• Graphon [Lovász and Szegedy, 2006]:

 $W: [0,1]^2 \mapsto [0,1]$ Lebesque-measurable

• Cut-norm:

$$\delta_{\Box}(W,U) := \inf_{\substack{\varphi,\psi \\ \text{measurable}}} \sup_{\substack{S,T \subseteq [0,1] \\ \text{measurable}}} \left| \int_{S \times T} W^{\varphi}(x,y) - U^{\psi}(x,y) \mathrm{d}x \mathrm{d}y \right|,$$

 φ,ψ measure preserving transformations of [0,1].

• Graphon [Lovász and Szegedy, 2006]:

 $W: [0,1]^2 \mapsto [0,1]$ Lebesque-measurable

• Cut-norm:

$$\delta_{\Box}(W,U) := \inf_{\substack{\varphi,\psi \\ \text{measurable}}} \sup_{\substack{S,T \subseteq [0,1] \\ \text{measurable}}} \left| \int_{S \times T} W^{\varphi}(x,y) - U^{\psi}(x,y) \mathrm{d}x \mathrm{d}y \right|,$$

 φ,ψ measure preserving transformations of [0,1].

Space of graphons equipped with δ_{\Box} is **compact**

• Graphon [Lovász and Szegedy, 2006]:

 $W: [0,1]^2 \mapsto [0,1]$ Lebesque-measurable

• Cut-norm:

$$\delta_{\Box}(W,U) := \inf_{\substack{\varphi,\psi \\ weasurable}} \sup_{\substack{S,T \subseteq [0,1] \\ measurable}} \left| \int_{S \times T} W^{\varphi}(x,y) - U^{\psi}(x,y) \mathrm{d}x \mathrm{d}y \right|,$$

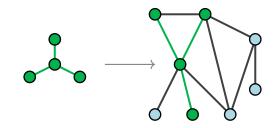
 φ,ψ measure preserving transformations of [0,1].

Space of graphons equipped with δ_{\Box} is **compact**

• Graph limit: equivalence class

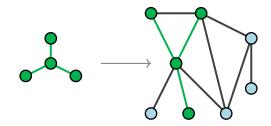
$$[W] = \begin{cases} W^{\varphi} : (x, y) \mapsto W(\varphi(x), \varphi(y)) \mid & \varphi \text{ an invertible, measure} \\ & \text{preserving transformation of } [0, 1] \end{cases}$$

Convergence "in parameters"



Finitely forcible graphons: [Lovász and Szegedy, 2011]

Convergence "in parameters"

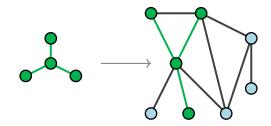


Homomorphism densities: F = (V, E) a simple finite graph, W a graphon

$$\begin{split} t(F,W) &:= \int_{[0,1]^{|V|}} \prod_{ij \in E_F} W\left(x_i, x_j\right) \prod_{i \in V} \mathrm{d}x_i \\ &\approx \mathsf{Expected density of } F \text{ in } W \end{split}$$

Finitely forcible graphons: [Lovász and Szegedy, 2011]

Convergence "in parameters"



Homomorphism densities: F = (V, E) a simple finite graph, W a graphon

$$\begin{split} t(F,W) &:= \int_{[0,1]^{|V|}} \prod_{ij \in E_F} W\left(x_i, x_j\right) \prod_{i \in V} \mathrm{d}x_i \\ &\approx \mathsf{Expected density of } F \text{ in } W \end{split}$$

 $W_n \to W \Leftrightarrow t(F, W_n) \to t(F, W)$ for all simple graphs F

Finitely forcible graphons: [Lovász and Szegedy, 2011]

Graphon in statistics

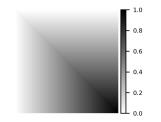
1. Graph limit

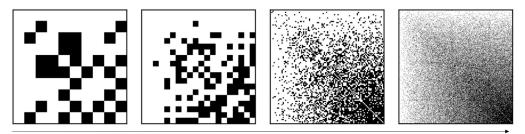
2. Graphon in statistics

3. Estimation

4. Summary

When we consider networks, what is the sample size?





Number of nodes

We consider exchangeable simple graphs

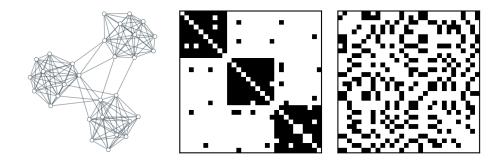


Figure 2: Graph generated from a stochastic block model with 3 groups. Relabelling the nodes hides the structure in the adjacency matrix.

 $(A_{ij}) \stackrel{\mathrm{d}}{=} (A_{\sigma(i)\sigma(j)})$ for all finite permutations σ .

Exchangeability gives us representation

From Aldous-Hoover theorem:

 $U_i \stackrel{iid}{\sim} \text{Uniform}[0, 1]$ $A_{ij}|U_i, U_j \stackrel{iid}{\sim} \text{Bernoulli}\left(W(U_i, U_j)\right) \quad \text{for } i < j,$

where $W : [0,1]^2 \mapsto [0,1]$ is symmetric, measurable \rightarrow **graphon**.

Exchangeability gives us representation

From Aldous-Hoover theorem:

$$\begin{split} U_i &\stackrel{iid}{\sim} \text{Uniform}[0,1]\\ A_{ij} | U_i, U_j &\stackrel{iid}{\sim} \text{Bernoulli} \left(W(U_i, U_j) \right) \quad \text{ for } i < j, \end{split}$$

where $W : [0,1]^2 \mapsto [0,1]$ is symmetric, measurable \rightarrow **graphon**.

All exchangeable graphs come from a graphon.

How to generate a graph given a graphon

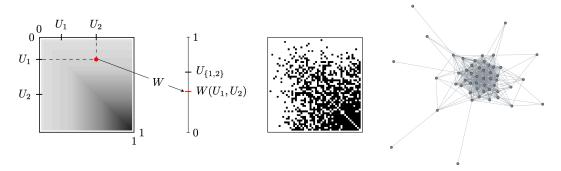
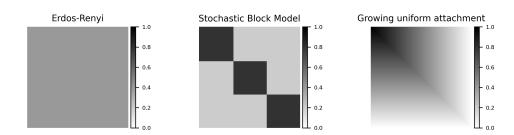


Figure 3: Sampling procedure for node exchangeable graphs. Image from [Orbanz and Roy, 2014].

Example of graphons for common graph models



"Vanilla" graphons cannot generate sparse graphs

Basic graphon theory only covers **dense graphs**:

If $|E_{G_n}| = o(n^2)$ (i.e., sparse), then $G_n \to \text{empty graph}$.

"Vanilla" graphons cannot generate sparse graphs

Basic graphon theory only covers dense graphs:

If $|E_{G_n}| = o(n^2)$ (i.e., sparse), then $G_n \to \text{empty graph}$.

solution ↓

Scaled graphon [Bickel and Chen, 2009]

 $A_{ij}|U_i, U_j \stackrel{iid}{\sim} \text{Bernoulli}\left(\rho_n f(U_i, U_j)\right) \quad \text{for } 0 < i < j \le n,$

where $f : [0,1]^2 \mapsto \mathbb{R}$ with $\iint_{[0,1]^2} f(x,y) dx dy = 1$.

Estimation

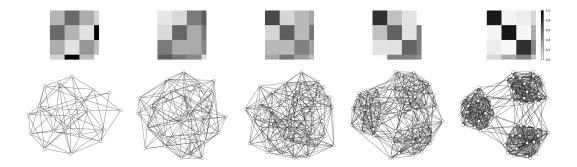
1. Graph limit

2. Graphon in statistics

3. Estimation

4. Summary

Step function approximation



Step function on $[0,1]^2 \rightarrow$ Stochastic Block model

How can we estimate graphons? (network histogram)

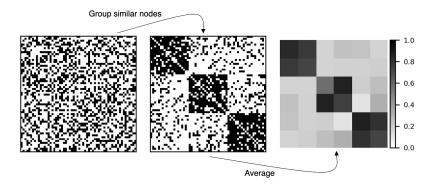


Figure 4: The 2 steps in graphon estimation using **network histogram** [Olhede et al., 2014]. Group sizes are computed from the data.

How can we estimate graphons? (method of moments)

Method of moments: compare theoretical and empirical homomorphism densities of a set of finite simple graphs to find parameters of SBM.

 $t(F, W_1) = t(F, W_2)$ $\forall F \Rightarrow W_1, W_2$ parametrize the same random graph.

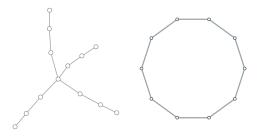


Figure 5: On the left k-l-wheel (k = 3, l = 4) used in [Bickel et al., 2011], on the right cycle used in ours.

Summary

1. Graph limit

2. Graphon in statistics

3. Estimation

4. Summary

OK, so what was this talk about?

Three POVs on graphons

- Generative models
- Limits of convergent graph sequences
- Objects identifying family of structurally similar graphs (hom. densities)

OK, so what was this talk about?

Three POVs on graphons

- Generative models
- Limits of convergent graph sequences
- Objects identifying family of structurally similar graphs (hom. densities)

General summary

- Graphons $\rightarrow\mbox{ closure}$ of space of $\mbox{exchangeable}$ finite simple graphs
- Graphons \leftrightarrow exchangeable graphs
- Mostly **theoretical** (e.g., used to study properties of GNN [Keriven et al., 2020, Ruiz et al., 2021b, Ruiz et al., 2021a])

References [1]

Bickel, P. J. and Chen, A. (2009).

A nonparametric view of network models and newman-girvan and other modularities. Proceedings of the National Academy of Sciences, 106(50):21068–21073.

Bickel, P. J., Chen, A., and Levina, E. (2011).

The method of moments and degree distributions for network models. The Annals of Statistics, 39(5):2280–2301.

Glasscock, D. (2015).

What is... a graphon. Notices of the AMS, 62(1).

Janson, S. (2010).

Graphons, cut norm and distance, couplings and rearrangements. arXiv preprint arXiv:1009.2376.

Keriven, N. (2020).

A short introduction to graphons.

https://nkeriven.github.io/files/tuto_graphon.pdf. Accessed: 2022-14-06.

Keriven, N., Bietti, A., and Vaiter, S. (2020).

Convergence and stability of graph convolutional networks on large random graphs.

Advances in Neural Information Processing Systems, 33:21512–21523.

Lovász, L. and Szegedy, B. (2006).

Limits of dense graph sequences.

Journal of Combinatorial Theory, Series B, 96(6):933–957.

References [2]

Lovász, L. and Szegedy, B. (2011).

Finitely forcible graphons. Journal of Combinatorial Theory, Series B, 101(5):269–301.

Olhede, S. C., Wolfe, P. J., and Bickel, P. J. (2014).

Network histograms and universality of blockmodel approximation. Proceedinas of the National Academy of Sciences of the United States of America. 111(41):14722–14727.

Orbanz, P. and Roy, D. M. (2014).

Bayesian models of graphs, arrays and other exchangeable random structures. *IEEE transactions on pattern analysis and machine intelligence*, 37(2):437–461.

Ruiz, L., Chamon, L. F., and Ribeiro, A. (2021a).

Graphon signal processing. IEEE Transactions on Signal Processing, 69:4961–4976.

Ruiz, L., Wang, Z., and Ribeiro, A. (2021b).

Graphon and graph neural network stability.

In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5255–5259. IEEE.

Homomorphism definition

Homomorphisms are adjacency preserving maps from motif F = (V', E') into graph G = (V, E) $\beta : V' \to V$ such that $(i, j) \in E'$ implies $(\beta(i), \beta(j)) \in E$

hom(F,G) represent the number of homomorphisms between motif F and graph G.

$$t(F,G) = \frac{\hom(F,G)}{n^{n'}}$$

Dense and sparse

Dense

$$\frac{|E(g_m)|}{|V(g_m)|^2} = O(1)$$

Sparse

$$\frac{|E(g_m)|}{|V(g_m)|^2} = o(1)$$

sparse
$$\Rightarrow \iint_{[0,1]^2} w(x,y) dx dy = 0 \Rightarrow w(x,y) = 0$$
 a.e.

Network Histogram

$$\hat{z} = \underset{z \in \mathcal{Z}_k}{\operatorname{argmax}} \sum_{i < j} \left\{ A_{ij} \log \bar{A}_{z_i z_j} + (1 - A_{ij}) \log \left(1 - \bar{A}_{z_i z_j} \right) \right\}$$

where for all $1 \le a, b \le k$ they define the histogram bin heights

$$\bar{A}_{ab} = \frac{\sum_{i < j} A_{ij} \mathbb{1}_{\{\hat{z}_i = a\}} \mathbb{1}_{\{\hat{z}_j = b\}}}{\sum_{i < j} \mathbb{1}_{\{\hat{z}_i = a\}} \mathbb{1}_{\{\hat{z}_j = b\}}},$$

where \bar{A} an be seen as the estimated connection matrix of the block model conditional on the assignment vector z