

Graph limit and graphons

A short statistical introduction

Charles Dufour *charles.dufour@epfl.ch*

September 30, 2022

Chair of Statistical Data Science (SDS)

Outline

1. [Graph limit](#page-3-0)

- 2. [Graphon in statistics](#page-24-0)
- 3. [Estimation](#page-33-0)

4. [Summary](#page-37-0)

Inspired by[[Janson, 2010](#page-40-0), [Glasscock, 2015,](#page-40-1) [Keriven, 2020\]](#page-40-2)

Why bother ?

Figure 1: Different levels of Euclideanity

[Graph limit](#page-3-0)

1. [Graph limit](#page-3-0)

2. [Graphon in statistics](#page-24-0)

3. [Estimation](#page-33-0)

4. [Summary](#page-37-0)

- $d(H, G) := \frac{\text{\# copies of } H \text{ in } G}{\binom{n_G}{n_H}}.$
- \bullet $d(C_2, G)$: edge density
- $d(C_4, G)$: 4-cycles density

 $d(C_2, G) = 0.5$

- $d(H, G) := \frac{\text{\# copies of } H \text{ in } G}{\binom{n_G}{n_H}}.$
- \bullet $d(C_2, G)$: edge density
- $d(C_4, G)$: 4-cycles density

- $d(H, G) := \frac{\text{\# copies of } H \text{ in } G}{\binom{n_G}{n_H}}.$
- \bullet $d(C_2, G)$: edge density
- $d(C_4, G)$: 4-cycles density

- $d(H, G) := \frac{\text{\# copies of } H \text{ in } G}{\binom{n_G}{n_H}}.$
- \bullet $d(C_2, G)$: edge density
- $d(C_4, G)$: 4-cycles density

- $d(H, G) := \frac{\text{\# copies of } H \text{ in } G}{\binom{n_G}{n_H}}.$
- \bullet $d(C_2, G)$: edge density
- $d(C_4, G)$: 4-cycles density

How many 4-cycles must a graph with edge density at least 1/2 have?

- $d(H, G) := \frac{\text{\# copies of } H \text{ in } G}{\binom{n_G}{n_H}}.$
- \bullet $d(C_2, G)$: edge density
- $d(C_4, G)$: 4-cycles density

 $d(C_4, G) = 3/{6 \choose 4} = 3/15$

• Minimize $d(C_4, G)$ over all finite graphs G with $d(C_2, G) = 1/2$.

How many 4-cycles must a graph with edge density at least 1/2 have?

• $d(H, G) := \frac{\text{\# copies of } H \text{ in } G}{\binom{n_G}{n_H}}.$

- \bullet $d(C_2, G)$: edge density
- $d(C_4, G)$: 4-cycles density C_4

 $d(C_4, G) = 3/{6 \choose 4} = 3/15$

- Minimize $d(C_4, G)$ over all finite graphs G with $d(C_2, G) = 1/2$.
- Minimize $x^3 6x$ over all rational numbers x satisfying $x \ge 0$.

Images from[[Glasscock, 2015](#page-40-1)] Graph limits were introduced by[[Lovász and Szegedy, 2006\]](#page-40-3)

Images from[[Glasscock, 2015](#page-40-1)] Graph limits were introduced by[[Lovász and Szegedy, 2006\]](#page-40-3)

Labelling of the nodes gets in the way

Image from[[Orbanz and Roy, 2014\]](#page-41-0)

Labelling of the nodes gets in the way

• **Graphon** [\[Lovász and Szegedy, 2006\]](#page-40-3):

 $W: [0,1]^2 \mapsto [0,1]$ Lebesque-measurable

• **Graphon** [\[Lovász and Szegedy, 2006\]](#page-40-3):

 $W: [0,1]^2 \mapsto [0,1]$ Lebesque-measurable

• **Cut-norm**:

$$
\delta_{\square}(W,U):=\inf_{\varphi,\psi}\sup_{\substack{S,T\subseteq [0,1]\\ \text{measurable}}} \left|\int_{S\times T} W^\varphi(x,y)-U^\psi(x,y)\mathrm{d} x\mathrm{d} y\right|,
$$

 φ, ψ measure preserving transformations of [0, 1].

• **Graphon** [\[Lovász and Szegedy, 2006\]](#page-40-3):

 $W: [0,1]^2 \mapsto [0,1]$ Lebesque-measurable

• **Cut-norm**:

$$
\delta_\square(W,U) := \inf_{\varphi,\psi} \sup_{\substack{S,T\subseteq [0,1]\\ \text{measurable}}} \left|\int_{S\times T} W^\varphi(x,y) - U^\psi(x,y)\mathrm{d} x \mathrm{d} y\right|,
$$

 φ, ψ measure preserving transformations of [0, 1].

Space of graphons equipped with δ_{Π} is **compact**

• **Graphon** [\[Lovász and Szegedy, 2006\]](#page-40-3):

 $W: [0,1]^2 \mapsto [0,1]$ Lebesque-measurable

• **Cut-norm**:

$$
\delta_\square(W,U) := \inf_{\varphi,\psi} \sup_{\substack{S,T\subseteq [0,1]\\ \text{measurable}}} \left|\int_{S\times T} W^\varphi(x,y) - U^\psi(x,y)\mathrm{d} x \mathrm{d} y\right|,
$$

 φ, ψ measure preserving transformations of [0, 1].

Space of graphons equipped with δ_{Π} is **compact**

• **Graph limit**: equivalence class

(

$$
[W] = \begin{cases} W^{\varphi} : (x, y) \mapsto W(\varphi(x), \varphi(y)) \mid & \varphi \text{ an invertible, measure} \\ W^{\varphi} : (x, y) \mapsto W(\varphi(x), \varphi(y)) \mid & \text{preserving transformation of } [0, 1] \end{cases}
$$

 $\overline{)}$

Convergence "in parameters"

Finitely forcible graphons:[[Lovász and Szegedy, 2011\]](#page-41-1) 8

Convergence "in parameters"

Homomorphism densities: $F = (V, E)$ a simple finite graph, W a graphon

$$
t(F, W) := \int_{[0,1]^{|V|}} \prod_{ij \in E_F} W(x_i, x_j) \prod_{i \in V} dx_i
$$

$$
\approx \text{Expected density of } F \text{ in } W
$$

Finitely forcible graphons:[[Lovász and Szegedy, 2011\]](#page-41-1) 8

Convergence "in parameters"

Homomorphism densities: $F = (V, E)$ a simple finite graph, W a graphon

$$
t(F, W) := \int_{[0,1]^{|V|}} \prod_{ij \in E_F} W(x_i, x_j) \prod_{i \in V} dx_i
$$

$$
\approx \text{Expected density of } F \text{ in } W
$$

 $\vert W_n \to W \Leftrightarrow t(F, W_n) \to t(F, W)$ for all simple graphs F

Finitely forcible graphons:[[Lovász and Szegedy, 2011\]](#page-41-1) 8

[Graphon in statistics](#page-24-0)

1. [Graph limit](#page-3-0)

2. [Graphon in statistics](#page-24-0)

3. [Estimation](#page-33-0)

4. [Summary](#page-37-0)

When we consider networks, what is the sample size ?

Number of nodes

We consider exchangeable simple graphs

Figure 2: Graph generated from a stochastic block model with 3 groups. Relabelling the nodes hides the structure in the adjacency matrix.

 $(A_{ij})\stackrel{\rm d}{=} (A_{\sigma(i)\sigma(j)})\,$ for all finite permutations $\sigma.$

Exchangeability gives us representation

From Aldous-Hoover theorem:

$$
U_i \stackrel{iid}{\sim} \text{Uniform}[0, 1]
$$
\n
$$
A_{ij} | U_i, U_j \stackrel{iid}{\sim} \text{Bernoulli}\left(W(U_i, U_j)\right) \quad \text{for } i < j,
$$

where $W : [0, 1]^2 \mapsto [0, 1]$ is symmetric, measurable \rightarrow graphon.

Exchangeability gives us representation

From Aldous-Hoover theorem:

 $U_i \stackrel{iid}{\sim}$ Uniform[0, 1] $A_{ij}|U_i, U_j \stackrel{iid}{\sim} \text{Bernoulli}\left(W(U_i, U_j)\right)$ for $i < j$,

where $W : [0, 1]^2 \mapsto [0, 1]$ is symmetric, measurable \rightarrow graphon.

All exchangeable graphs come from a graphon.

How to generate a graph given a graphon

Figure 3: Sampling procedure for node exchangeable graphs. Image from [\[Orbanz and Roy, 2014](#page-41-0)].

Example of graphons for common graph models

"Vanilla" graphons cannot generate sparse graphs

Basic graphon theory only covers **dense graphs**:

If $|E_{G_n}| = o(n^2)$ (i.e., sparse), then $G_n \to$ empty graph.

"Vanilla" graphons cannot generate sparse graphs

Basic graphon theory only covers **dense graphs**:

If $|E_{G_n}| = o(n^2)$ (i.e., sparse), then $G_n \to$ empty graph.

solution

↓

Scaled graphon [[Bickel and Chen, 2009](#page-40-4)]

 $A_{ij} | U_i, U_j \stackrel{iid}{\sim} \text{Bernoulli}\left(\rho_{\text{n}} f(U_i, U_j)\right) \quad \text{ for } 0 < i < j \le n,$

where $f : [0,1]^2 \mapsto \mathbb{R}$ with $\iint_{[0,1]^2} f(x, y) \, dx \, dy = 1.$

[Estimation](#page-33-0)

1. [Graph limit](#page-3-0)

2. [Graphon in statistics](#page-24-0)

3. [Estimation](#page-33-0)

4. [Summary](#page-37-0)

Step function approximation

Step function on $[0,1]^2 \rightarrow$ Stochastic Block model

How can we estimate graphons ? (network histogram)

Figure 4: The 2 steps in graphon estimation using **network histogram** [\[Olhede et al., 2014\]](#page-41-2). Group sizes are computed from the data.

How can we estimate graphons ? (method of moments)

Method of moments: compare theoretical and empirical homomorphism densities of a set of finite simple graphs to find parameters of SBM.

 $t(F, W_1) = t(F, W_2)$ $\forall F \Rightarrow W_1, W_2$ parametrize the same random graph.

Figure 5: On the left k-l-wheel ($k = 3, l = 4$) used in [\[Bickel et al., 2011\]](#page-40-5), on the right cycle used in ours.

[Summary](#page-37-0)

1. [Graph limit](#page-3-0)

2. [Graphon in statistics](#page-24-0)

3. [Estimation](#page-33-0)

4. [Summary](#page-37-0)

OK, so what was this talk about?

Three POVs on graphons

- Generative models
- Limits of convergent graph sequences
- Objects identifying family of structurally similar graphs (hom. densities)

OK, so what was this talk about?

Three POVs on graphons

- Generative models
- Limits of convergent graph sequences
- Objects identifying family of structurally similar graphs (hom. densities)

General summary

- Graphons → **closure** of space of **exchangeable** finite simple graphs
- Graphons \leftrightarrow exchangeable graphs
- Mostly **theoretical** (e.g., used to study properties of GNN [[Keriven et al., 2020](#page-40-6), [Ruiz et al., 2021b](#page-41-3), [Ruiz et al., 2021a\]](#page-41-4))

References [1]

Bickel, P. J. and Chen, A. (2009).

A nonparametric view of network models and newman–girvan and other modularities. *Proceedings of the National Academy of Sciences*, 106(50):21068–21073.

Bickel, P. J., Chen, A., and Levina, E. (2011).

The method of moments and degree distributions for network models. *The Annals of Statistics*, 39(5):2280–2301.

Glasscock, D. (2015).

What is... a graphon. *Notices of the AMS*, 62(1).

Janson, S. (2010).

Graphons, cut norm and distance, couplings and rearrangements. *arXiv preprint arXiv:1009.2376*.

Keriven, N. (2020).

Accessed: 2022–14-06.

A short introduction to graphons. https://nkeriven.github.io/files/tuto_graphon.pdf.

Keriven, N., Bietti, A., and Vaiter, S. (2020).

Convergence and stability of graph convolutional networks on large random graphs.

Advances in Neural Information Processing Systems, 33:21512–21523.

Lovász, L. and Szegedy, B. (2006).

Limits of dense graph sequences.

Journal of Combinatorial Theory, Series B, 96(6):933–957.

References [2]

 \mathbb{R}

Lovász, L. and Szegedy, B. (2011).

Finitely forcible graphons. *Journal of Combinatorial Theory, Series B*, 101(5):269–301.

Olhede, S. C., Wolfe, P. J., and Bickel, P. J. (2014).

Network histograms and universality of blockmodel approximation. *Proceedings of the National Academy of Sciences of the United States of America*, 111(41):14722–14727.

Orbanz, P. and Roy, D. M. (2014).

Bayesian models of graphs, arrays and other exchangeable random structures. *IEEE transactions on pattern analysis and machine intelligence*, 37(2):437–461.

Ruiz, L., Chamon, L. F., and Ribeiro, A. (2021a).

Graphon signal processing.

IEEE Transactions on Signal Processing, 69:4961–4976.

Ruiz, L., Wang, Z., and Ribeiro, A. (2021b).

Graphon and graph neural network stability.

In *ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 5255–5259. IEEE.

Homomorphism definition

Homomorphisms are adjacency preserving maps from motif $F = (V', E')$ into graph $G = (V, E)$

 $\beta: V' \to V$ such that $(i, j) \in E'$ implies $(\beta(i), \beta(j)) \in E$

 $hom(F, G)$ represent the number of homomorphisms between motif F and graph G .

$$
t(F,G) = \frac{\hom(F,G)}{n^{n'}}
$$

Dense and sparse

Dense

$$
\frac{|E(g_m)|}{|V(g_m)|^2} = O(1)
$$

Sparse

$$
\frac{|E(g_m)|}{|V(g_m)|^2} = o(1)
$$

$$
\text{sparse} \Rightarrow \iint_{[0,1]^2} w(x, y) dx dy = 0 \Rightarrow w(x, y) = 0 \text{ a.e.}
$$

Network Histogram

$$
\hat{z} = \operatornamewithlimits{argmax}_{z \in Z_k} \sum_{i < j} \left\{ A_{ij} \log \bar{A}_{z_i z_j} + \left(1 - A_{ij} \right) \log \left(1 - \bar{A}_{z_i z_j} \right) \right\}
$$

where for all $1 \le a, b \le k$ they define the histogram bin heights

$$
\bar{A}_{ab} = \frac{\sum_{i < j} A_{ij} \mathbf{1}_{\{\hat{z}_i = a\}} \mathbf{1}_{\{\hat{z}_j = b\}}}{\sum_{i < j} \mathbf{1}_{\{\hat{z}_i = a\}} \mathbf{1}_{\{\hat{z}_j = b\}}},
$$

where \bar{A} an be seen as the estimated connection matrix of the block model conditional on the assignment vector z